Finding Low delta V paths to NEOs

When a transfer orbit is tangent to coplanar
departure and destination orbits, velocity
vectors point in the same direction.

No delta V is needed for direction change,
only speed change.

A transfer orbit tangent to two coplanar,
circular orbits is the well known Hohmann
transfer orbit.

But what if the destination orbit is an ellipse? For destination orbits, we’ll

look at coplanar asteroid orbits with perihelion > 1 A.U. Like the Hohmann
transfer orbit, we want our transfer orbits to be tangent to the destination as
well as the departure orbit. This way no delta V is needed for direction change.

Call the asteroid’s
orbit Ellipse 1.
Ellipse 1°s
eccentricity: e,
semi major axis: a,
sun’s center: F,
2nd focus: F,

Call the red transfer
orbit Ellipse 2.
eccentricity: e,
semi major axis: a,
sun’s center: F,

2nd focus: F,

Call the point
of tangency P

Ellipses 1 and 2 share a tangent line
at point P. A ray emanating from a
focus will be reflected to the second
focus with angle of incidence equal
to angle of reflection.

This implies P, F,, and F, are
collinear.

Also angle F PF, = angle F PF..
Call this angle o .
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The distance between
F, and P we call ka,.

l-e, =k =1+e¢,

The other sides of the triangle can
be deduced by properties of an
ellipse.

Given a specific value for k, we’d like to
know angle .

We can use the triangle to the left since it’s
similar to triangle F PF.,.

Law of cosines gives us

k* + (2-k)’ - 2k(2-k)cos ¢ = (2e,)’
o =acos( ((2-2e)/(k(2-k))) - 1)
Also, 3 =acos(e/k -1/ke, + 1/e,)

So if know the asteroid orbit’s eccentricity we can determine angles alpha
and beta for a given value of k.

Now we look at the transfer orbit, ellipse 2.

The transfer ellipse is tangent to earth’s orbit so
we know it’s perihelion is 1 A.U.

Therefore the distance between f, and f; is 2a,-2.

The third side can be inferred from a property of
the ellipse.

Using the law of cosines we can deduce
a,=(2-Ka’(l+cosx )) / (-2ka,(1+cosx )+4)
0 =acos( (kaa,-2a,+1)/ (ka,a,-ka,))
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Ellipse 2’s axis is at an angle of
B - 0 to Ellipse 1’s axis.

Since opposite angles are equal,
we can see the transfer orbit’s
longitude of periapsis (@®,) differs
from the destination orbit’s longitude
of periapsis (&,) by an angle of

B - 0.

If A lies after perihelion and before
aphelion ((,) = (@,) - (B - 0)

If A lies before perihelion and after
aphelion (@,) = (@,) + (3 - 0)

We set up a spread sheet to do
increments of k from 1-e, to 1+e,.

This gives us a spectrum of possible
tangent transfer orbits.

For each transfer orbit we can find
a,e,and @ .

Since we’re assuming coplanar orbits,
1 and line of nodes are undefined.

How about 7, time of periapsis?

Recall we leave earth at the transfer
orbit’s perihelion. That the longitude
of periapsis coincides with earth’s
position indicates the date.

For example, a 0 degree longitude of
periapsis implies departure during
the autumnal equinox, around
September 21.

In the illustration to the left, departure
from earth occurs at 307 degrees
which would be around July 30.
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We would like to know the date the transfer orbit arrives at it’s destination.

As the transfer vehicle moves between earth and the destination orbit, it
sweeps out the grey wedge below. What fraction is this of Ellipse 2?

-172

Vertically scaling Ellipse 2 by (1- ¢,>)"* gives a circle having radius a,.

If P is after perihelion

and before aphelion,

True anomaly f, =7 - 0

if P 1s afer perihelion or

7 + 0 if Pis after aphelion.

OS =a,cos E=ae, + ka,cos f,

Radius vector is ka,. The polar
equation for an ellipse gives:

ka,=a,(1-¢) /(1 +e,cosf)
Substituting for ka,:

ae, +a,(1-e’)cosf,

a, cos E = 1 +e,cosf,
B e, + cosf,
COS E=TYe cost,

Area triangle F OQise,a’sin E/2.  Areca wedge OQVisEa, /2.
Area FQV = Area Wedge OQYV - Area triangle F,0Q
Area FQV=Ea’/2-e,a’sinE/2
a,’ .
= T(E -¢,sin E)

Using A.U., and years as units, a transfer orbit’s period is a,”” years.
2

Time between earth departure and Pis a,”” (E - e,sin E) / (2 7)

By adding trip times to departure dates, we can get dates of arrival.
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We now have arrival dates and longitudes for the tangent transfer orbits.
But how often will the target NEO be at the right place at the right time?

To determine this we graph the true longitude (L) of the tangent transfer
arrivals by date as well as the asteroid’s true longitude by date.

Where the paths on the graph intersect, we have a time and place for where
the asteroid is amenable to receiving a tangent transfer orbit. In Excel, dragging
the cusor over a location on the graph gives information on the point:

Serjes 1
(10425411, 221 .08) i

F £ Vi Y

Scrolling through the various increments of k, I found the transfer ellipse that
arrives at the true longitude of 221 degrees at October 25. From this row I
can also get departure date and longitude as well as other information.

My term “ka,” is another term for “r”.

We know the semi-major axis a the transfer orbit as well as the destination
orbit. So we can get the speed for both objects at rendezvous using the

vis-viva equation:
v=2m N 2/r-1/a

Since I use A.U., years, and solar mass as my units, u becomes 4.
I convert A.U./Year to km/sec by multiplying by 4.74.

Recall that the transfer orbit is tangent to the destination orbit, so the velocity
vectors are pointing in the same direction. So to get v I merely subtract
the ship’s speed from the asteroid’s speed.

infinity o

We also know r during earth departure so we can figure the ship’s speed at
that point. We call earth’s speed 27wA.U./year. To get v, .., at departure, we
subtract the ship’s speed from earth’s speed.

infinity

To our spreadsheet we added v, ;,,, at departure as well as arrival.

infinity
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